PROFILE

氏名: | 山川 勝史 (Masashi Yamakawa) |
所属: | 京都工芸繊維大学 機械工学系 |
職名: | 教授 |
E-mail: | yamakawa@kit.ac.jp |
研究者総覧のページ |
Profile
1996年3月 | 京都工芸繊維大学工芸科学研究科機械システム工学専攻修了 |
1996年4月 | 東レ株式会社エンジニアリング技術開発センター 生産装置開発室 室員(~2001年10月) |
2001年11月 | 京都工芸繊維大学,助手 |
2004年3月 | 学位(工学)(京都工芸繊維大学) |
2007年4月 | 京都工芸繊維大学,助教 |
2007年11月 | 京都工芸繊維大学,准教授 |
2016年4月 | 英国Warwick大学,客員准教授(~2017年3月) |
2021年3月 | 京都工芸繊維大学,教授 |
Selected Papers
Transverse vortex-induced vibration of two elliptic cylinders in tandem: Effects of spacing, Physics of Fluids, Vol. 35, Issue 11 (2023) [Link] https://doi.org/10.1063/5.0169835
Numerical model for cough-generated droplet dispersion on moving escalator with multiple passengers, Indoor Air, Vol. 32, Issue 11 (2022) [Link] https://onlinelibrary.wiley.com/doi/10.1111/ina.13131
Quantifying the COVID 19 infection risk due to droplet/aerosol inhalation, Scientific repots 12, Article number: 11186 (2022) [Link] https://doi.org/10.1038/s41598-022-14862-y
Blood Flow Simulation of Left Ventricle with Twisted Motion, Lecture Notes in Computer Science, vol. 13353, pp. 343–355 (2022) [Link] https://doi.org/10.1007/978-3-031-08760-8_29
Numerical analysis of the efficiency of face masks for preventing droplet airbone infections, Physics of Fluids 34, 033309 (2022) [Link] https://doi.org/10.1063/5.0083250
Moving computational multi-domain method for modelling the flow interaction of multiple moving objects, Advances in Aerodynamics 4, Article number: 5 (2022) [Link] https://doi.org/10.1186/s42774-021-00099-2
Flight Simulation of Water Rocket, International Journal of Computational Methods (2021) [Link] https://doi.org/10.1142/s0219876221410176
Influence of turbulence-radiation interaction on radiative heat transfer to furnace wall and temperature distribution in large-scale industrial furnaces enveloping hydrocarbon flame, Journal of Thermal Science and Technology Vol. 16 No. 2, JTST0030 (2021) [Link] https://doi.org/10.1299/jtst.2021jtst0030
Computational investigation of prolonged airborne dispersion of novel coronavirus-laden droplets, Journal of Aerosol Science Vol. 155, 105769 (2021) [Link] https://doi.org/10.1016/j.jaerosci.2021.105769
Optimization of Knee Joint Maximum Angle on Dolphin Kick, Physics of Fluids 32, 067105 (2020) [Link] https://aip.scitation.org/doi/abs/10.1063/1.5142422
Six degrees of freedom flight simulation of tilt-rotor aircraft with nacelle conversion, Journal of Computational Science, JOCS_101164 (2020) [Link] https://www.sciencedirect.com/science/article/abs/pii/S1877750320304658?via%3Dihub
Multi Axes Sliding Mesh Approach for Compressible Viscous Flows, Lecture Notes in Computer Science, LNCS 12143, pp. 46-59 DOI: https://doi.org/10.1007/978-3-030-50436-6_4
Dolphin Kick Swimmer Using the Unstructured Moving Mesh Method, Lecture Notes in Computer Science, LNCS 11540, 468-475 (2019) [Link] https://www.iccs-meeting.org/archive/iccs2019/papers/115400452.pdf
Effect of Plate Mounted between Two Wires in Electric Arc Spraying, Journal of Computational Science 32, 56-67, (2019) [Link] https://www.sciencedirect.com/science/article/abs/pii/S1877750318310160
Free Surface Flow Simulation of Fish Turning Motion, Lecture Notes in Computer Science, LNCS 10862, pp. 24-36 (2018) [Link] https://link.springer.com/chapter/10.1007/978-3-319-93713-7_2
Numerical Simulation of Rotation of Intermeshing Rotors using Added and Eliminated Mesh Method, Procedia Computer Science, 108C, 1883-1892 (2017) [Link] https://www.sciencedirect.com/science/article/pii/S1877050917305963?via%3Dihub
Study on the Nozzle Jet in Arc Spraying, Applied Mathematics and Mechanics, Vol.37, No.12, pp.1394-1402 (2016) [Link] http://www.applmathmech.cn/EN/abstract/abstract5115.shtml
Simulations of a Falling Sphere with Concentration in an Infinite Long Pipe Using a New Moving Mesh System, Applied Thermal Engineering, Vol. 72, pp.29-33 (2014) [Link] https://www.sciencedirect.com/science/article/abs/pii/S1359431114005390
Parallel Computations of Incompressible Flow Around Falling Spheres in a Long Pipe Using Moving Computational Domain Method, Computers & Fluids Vol.88, pp.850-856(2013) [Link] https://www.sciencedirect.com/science/article/abs/pii/S0045793013003009
Adaptive Polyhedral Mesh Generation Method for Compressible Flows, Journal of Computational Science and Technology, Vol.7, No.2, pp.278-285(2013) [Link] https://www.jstage.jst.go.jp/article/jcst/7/2/7_278/_article
Parallel Computations of Incompressible Fluid-Rigid Bodies Interaction Using Transmission Mesh Method, Computers & Fluids Vol.80, pp.178-183 (2013) [Link] https://www.sciencedirect.com/science/article/abs/pii/S0045793012001181?via%3Dihub
Numerical Simulation for a Flow around Body Ejection using an Axisymmetric Unstructured Moving Grid Method, Computational Thermal Sciences, Vol.4, No.3, pp.217-223 (2012) [Link] http://www.dl.begellhouse.com/journals/648192910890cd0e,05b85a7869b9e28a,3ce25bbe50f9eff7.html
Trans-Mesh Method and Its Application to Simulations of Incompressible Fluid-Rigid Bodies Interaction, Journal of Computational Science and Technology, Vol.5, No.3, pp. 163-174 (2011) [Link] https://www.jstage.jst.go.jp/article/jcst/5/3/5_3_163/_article
Domain decomposition method for unstructured meshes in an OpenMP computing environment, Computers & Fluids, Vol. 45, pp.168-171 (2011) [Link] https://www.sciencedirect.com/science/article/abs/pii/S0045793011000600?via%3Dihub